View publications by year:
-
Yessotoxin production and aerosolization during the unprecedented red tide of 2020 in southern California
Abstract
An April–May 2020 bloom of the red tide microalga Lingulodinium polyedra developed to an unprecedented size, extending from northern Baja California to the Santa Barbara Channel. The L. polyedra strain is native to coastal California and is known to produce low levels of a toxic di-sulfated polyether named yessotoxin (YTX). In order to assess the evolution of the YTX content throughout the bloom and its transfer to water and aerosols, the concentration of YTX analogs was measured in the particulate and the dissolved organic matter of the sea surface water as well as in onshore sea spray aerosols. The YTX cell content was characteristic of Californian strains of L. polyedra. A lower production of YTX analogs by the cells at the peak of the bloom was detected, yielding total YTX content (particulate + dissolved) ranging from below the detection limit to 6.89 ng L−1 at that time. Yessotoxin and homo-yessotoxin were detected in sea spray aerosol measured onshore (from below detection limit to 20.67 ± 8.37 pg m−3), constituting the first detection of YTX analogs in coastal aerosols. The aerosolized YTX did not correlate with the seawater content but rather with westerly winds and higher tides. The presence of YTX in aerosols motivates further investigation into potential correlations with adverse effects in humans.
-
Strong chemotaxis by marine bacteria towards polysaccharides is enhanced by the abundant organosulfur compound DMSP
Abstract
The ability of marine bacteria to direct their movement in response to chemical gradients influences inter-species interactions, nutrient turnover, and ecosystem productivity. While many bacteria are chemotactic towards small metabolites, marine organic matter is predominantly composed of large molecules and polymers. Yet, the signalling role of these large molecules is largely unknown. Using in situ and laboratory-based chemotaxis assays, we show that marine bacteria are strongly attracted to the abundant algal polysaccharides laminarin and alginate. Unexpectedly, these polysaccharides elicited stronger chemoattraction than their oligo- and monosaccharide constituents. Furthermore, chemotaxis towards laminarin was strongly enhanced by dimethylsulfoniopropionate (DMSP), another ubiquitous algal-derived metabolite. Our results indicate that DMSP acts as a methyl donor for marine bacteria, increasing their gradient detection capacity and facilitating their access to polysaccharide patches. We demonstrate that marine bacteria are capable of strong chemotaxis towards large soluble polysaccharides and uncover a new ecological role for DMSP in enhancing this attraction. These navigation behaviours may contribute to the rapid turnover of polymers in the ocean, with important consequences for marine carbon cycling.
-
Short-term acidification promotes diverse iron acquisition and conservation mechanisms in upwelling-associated phytoplankton
Abstract
Coastal upwelling regions are among the most productive marine ecosystems but may be threatened by amplified ocean acidification. Increased acidification is hypothesized to reduce iron bioavailability for phytoplankton thereby expanding iron limitation and impacting primary production. Here we show from community to molecular levels that phytoplankton in an upwelling region respond to short-term acidification exposure with iron uptake pathways and strategies that reduce cellular iron demand. A combined physiological and multi-omics approach was applied to trace metal clean incubations that introduced 1200 ppm CO2 for up to four days. Although variable, molecular-level responses indicate a prioritization of iron uptake pathways that are less hindered by acidification and reductions in iron utilization. Growth, nutrient uptake, and community compositions remained largely unaffected suggesting that these mechanisms may confer short-term resistance to acidification; however, we speculate that cellular iron demand is only temporarily satisfied, and longer-term acidification exposure without increased iron inputs may result in increased iron stress.
-
Interspecies interactions determine growth dynamics of biopolymer-degrading populations in microbial communities
Abstract
Microbial communities perform essential ecosystem functions such as the remineralization of organic carbon that exists as biopolymers. The first step in mineralization is performed by biopolymer degraders, which harbor enzymes that can break down polymers into constituent oligo- or monomeric forms. The released nutrients not only allow degraders to grow, but also promote growth of cells that either consume the degradation products, i.e., exploiters, or consume metabolites released by the degraders or exploiters, i.e., scavengers. It is currently not clear how such remineralizing communities assemble at the microscale—how interactions between the different guilds influence their growth and spatial distribution, and hence the development and dynamics of the community. Here, we address this knowledge gap by studying marine microbial communities that grow on the abundant marine biopolymer alginate. We used batch growth assays and microfluidics coupled to time-lapse microscopy to quantitatively investigate growth and spatial distribution of single cells. We found that the presence of exploiters or scavengers alters the spatial distribution of degrader cells. In general, exploiters and scavengers—which we collectively refer to as cross-feeder cells—slowed down the growth of degrader cells. In addition, coexistence with cross-feeders altered the production of the extracellular enzymes that break down polymers by degrader cells. Our findings reveal that ecological interactions by nondegrading community members have a profound impact on the functions of microbial communities that remineralize carbon biopolymers in nature.
-
Progress and challenges in exploring aquatic microbial communities using non-targeted metabolomics
Abstract
Advances in bioanalytical technologies are constantly expanding our insights into complex ecosystems. Here, we highlight strategies and applications that make use of non-targeted metabolomics methods in aquatic chemical ecology research and discuss opportunities and remaining challenges of mass spectrometry-based methods to broaden our understanding of environmental systems.
-
Trophic interactions shape the spatial organization of medium-chain carboxylic acid producing granular biofilm communities
Abstract
Granular biofilms producing medium-chain carboxylic acids (MCCA) from carbohydrate-rich industrial feedstocks harbor highly streamlined communities converting sugars to MCCA either directly or via lactic acid as intermediate. We investigated the spatial organization and growth activity patterns of MCCA producing granular biofilms grown on an industrial side stream to test (i) whether key functional guilds (lactic acid producing Olsenella and MCCA producing Oscillospiraceae) stratified in the biofilm based on substrate usage, and (ii) whether spatial patterns of growth activity shaped the unique, lenticular morphology of these biofilms. First, three novel isolates (one Olsenella and two Oscillospiraceae species) representing over half of the granular biofilm community were obtained and used to develop FISH probes, revealing that key functional guilds were not stratified. Instead, the outer 150–500 µm of the granular biofilm consisted of a well-mixed community of Olsenella and Oscillospiraceae, while deeper layers were made up of other bacteria with lower activities. Second, nanoSIMS analysis of 15N incorporation in biofilms grown in normal and lactic acid amended conditions suggested Oscillospiraceae switched from sugars to lactic acid as substrate. This suggests competitive-cooperative interactions may govern the spatial organization of these biofilms, and suggests that optimizing biofilm size may be a suitable process engineering strategy. Third, growth activities were similar in the polar and equatorial biofilm peripheries, leaving the mechanism behind the lenticular biofilm morphology unexplained. Physical processes (e.g., shear hydrodynamics, biofilm life cycles) may have contributed to lenticular biofilm development. Together, this study develops an ecological framework of MCCA-producing granular biofilms that informs bioprocess development.
-
Mechanistic constraints on the trade-off between photosynthesis and respiration in response to warming
Abstract
Phytoplankton are responsible for half of all oxygen production and drive the ocean carbon cycle. Metabolic theory predicts that increasing global temperatures will cause phytoplankton to become more heterotrophic and smaller. Here, we uncover the metabolic trade-offs between cellular space, energy, and stress management driving phytoplankton thermal acclimation and how these might be overcome through evolutionary adaptation. We show that the observed relationships between traits such as chlorophyll, lipid content, C:N, and size can be predicted on the basis of the metabolic demands of the cell, the thermal dependency of transporters, and changes in membrane lipids. We suggest that many of the observed relationships are not fixed physiological constraints but rather can be altered through adaptation. For example, the evolution of lipid metabolism can favor larger cells with higher lipid content to mitigate oxidative stress. These results have implications for rates of carbon sequestration and export in a warmer ocean.
-
Genome content predicts the carbon catabolic preferences of heterotrophic bacteria
Abstract
Heterotrophic bacteria—bacteria that utilize organic carbon sources—are taxonomically and functionally diverse across environments. It is challenging to map metabolic interactions and niches within microbial communities due to the large number of metabolites that could serve as potential carbon and energy sources for heterotrophs. Whether their metabolic niches can be understood using general principles, such as a small number of simplified metabolic categories, is unclear. Here we perform high-throughput metabolic profiling of 186 marine heterotrophic bacterial strains cultured in media containing one of 135 carbon substrates to determine growth rates, lag times and yields. We show that, despite high variability at all levels of taxonomy, the catabolic niches of heterotrophic bacteria can be understood in terms of their preference for either glycolytic (sugars) or gluconeogenic (amino and organic acids) carbon sources. This preference is encoded by the total number of genes found in pathways that feed into the two modes of carbon utilization and can be predicted using a simple linear model based on gene counts. This allows for coarse-grained descriptions of microbial communities in terms of prevalent modes of carbon catabolism. The sugar–acid preference is also associated with genomic GC content and thus with the carbon–nitrogen requirements of their encoded proteome. Our work reveals how the evolution of bacterial genomes is structured by fundamental constraints rooted in metabolism.
-
Inherited chitinases enable sustained growth and rapid dispersal of bacteria from chitin particles
Abstract
Many biogeochemical functions involve bacteria utilizing solid substrates. However, little is known about the coordination of bacterial growth with the kinetics of attachment to and detachment from such substrates. In this quantitative study of Vibrio sp. 1A01 growing on chitin particles, we reveal the heterogeneous nature of the exponentially growing culture comprising two co-existing subpopulations: a minority replicating on chitin particles and a non-replicating majority which was planktonic. This partition resulted from a high rate of cell detachment from particles. Despite high detachment, sustained exponential growth of cells on particles was enabled by the enrichment of extracellular chitinases excreted and left behind by detached cells. The ‘inheritance’ of these chitinases sustains the colonizing subpopulation despite its reduced density. This simple mechanism helps to circumvent a trade-off between growth and dispersal, allowing particle-associated marine heterotrophs to explore new habitats without compromising their fitness on the habitat they have already colonized.
-
Identification of microbial metabolic functional guilds from large genomic dataset
Abstract
Heterotrophic microbes play an important role in the Earth System as key drivers of major biogeochemical cycles. Specifically, the consumption rate of organic matter is set by the interaction between diverse microbial communities and the chemical and physical environment in which they reside. Modeling these dynamics requires reducing the complexity of microbial communities and linking directly with biogeochemical functions. Microbial metabolic functional guilds provide one approach for reducing microbial complexity and incorporating microbial biogeochemical functions into models. However, we lack a way to identify these guilds. In this study, we present a method for defining metabolic functional guilds from annotated genomes, which are derived from both uncultured and cultured organisms. This method utilizes an Aspect Bernoulli (AB) model and was tested on three large genomic datasets with 1,733–3,840 genomes each. Ecologically relevant microbial metabolic functional guilds were identified including guilds related to DMSP degradation, dissimilatory nitrate reduction to ammonia, and motile copiotrophy. This method presents a way to generate hypotheses about functions co-occurring within individual microbes without relying on cultured representatives. Applying the concept of metabolic functional guilds to environmental samples will provide new insight into the role that heterotrophic microbial communities play in setting rates of carbon cycling.
-
Stress-induced metabolic exchanges between complementary bacterial types underly a dynamic mechanism of inter-species stress resistance
Abstract
Metabolic cross-feeding plays vital roles in promoting ecological diversity. While some microbes depend on exchanges of essential nutrients for growth, the forces driving the extensive cross-feeding needed to support the coexistence of free-living microbes are poorly understood. Here we characterize bacterial physiology under self-acidification and establish that extensive excretion of key metabolites following growth arrest provides a collaborative, inter-species mechanism of stress resistance. This collaboration occurs not only between species isolated from the same community, but also between unrelated species with complementary (glycolytic vs. gluconeogenic) modes of metabolism. Cultures of such communities progress through distinct phases of growth-dilution cycles, comprising of exponential growth, acidification-triggered growth arrest, collaborative deacidification, and growth recovery, with each phase involving different combinations of physiological states of individual species. Our findings challenge the steady-state view of ecosystems commonly portrayed in ecological models, offering an alternative dynamical view based on growth advantages of complementary species in different phases.
-
Controlled motility in the cyanobacterium Trichodesmium regulates aggregate architecture
Abstract
The ocean’s nitrogen is largely fixed by cyanobacteria, including Trichodesmium, which forms aggregates comprising hundreds of filaments arranged in organized architectures. Aggregates often form upon exposure to stress and have ecological and biophysical characteristics that differ from those of single filaments. Here, we report that Trichodesmium aggregates can rapidly modulate their shape, responding within minutes to changes in environmental conditions. Combining video microscopy and mathematical modeling, we discovered that this reorganization is mediated by “smart reversals” wherein gliding filaments reverse when their overlap with other filaments diminishes. By regulating smart reversals, filaments control aggregate architecture without central coordination. We propose that the modulation of gliding motility at the single-filament level is a determinant of Trichodesmium’s aggregation behavior and ultimately of its biogeochemical role in the ocean.
-
A Genome-Scale Metabolic Model of Marine Heterotroph Vibrio splendidus Strain 1A01
Abstract
While Vibrio splendidus is best known as an opportunistic pathogen in oysters, Vibrio splendidus strain 1A01 was first identified as an early colonizer of synthetic chitin particles incubated in seawater. To gain a better understanding of its metabolism, a genome-scale metabolic model (GSMM) of V. splendidus 1A01 was reconstructed. GSMMs enable us to simulate all metabolic reactions in a bacterial cell using flux balance analysis. A draft model was built using an automated pipeline from BioCyc. Manual curation was then performed based on experimental data, in part by gap-filling metabolic pathways and tailoring the model’s biomass reaction to V. splendidus 1A01. The challenges of building a metabolic model for a marine microorganism like V. splendidus 1A01 are described.
-
Functional annotation and importance of marine bacterial transporters of plankton exometabolite
Abstract
Metabolite exchange within marine microbial communities transfers carbon and other major elements through global cycles and forms the basis of microbial interactions. Yet lack of gene annotations and concern about the quality of existing ones remain major impediments to revealing currencies of carbon flux. We employed an arrayed mutant library of the marine bacterium Ruegeria pomeroyi DSS-3 to experimentally annotate substrates of organic compound transporter systems, using mutant growth and compound drawdown analyses to link transporters to their cognate substrates. Mutant experiments verified substrates for thirteen R. pomeroyi transporters. Four were previously hypothesized based on gene expression data (taurine, glucose/xylose, isethionate, and cadaverine/putrescine/spermidine); five were previously hypothesized based on homology to experimentally annotated transporters in other bacteria (citrate, glycerol, N-acetylglucosamine, fumarate/malate/succinate, and dimethylsulfoniopropionate); and four had no previous annotations (thymidine, carnitine, cysteate, and 3-hydroxybutyrate). These bring the total number of experimentally-verified organic carbon influx transporters to 18 of 126 in the R. pomeroyi genome. In a longitudinal study of a coastal phytoplankton bloom, expression patterns of the experimentally annotated transporters linked them to different stages of the bloom, and also led to the hypothesis that citrate and 3-hydroxybutyrate were among the most highly available bacterial substrates. Improved functional annotation of the gatekeepers of organic carbon uptake is critical for deciphering carbon flux and fate in microbial ecosystems.
-
Mutation-induced infections of phage-plasmids
Abstract
Phage-plasmids are extra-chromosomal elements that act both as plasmids and as phages, whose eco-evolutionary dynamics remain poorly constrained. Here, we show that segregational drift and loss-of-function mutations play key roles in the infection dynamics of a cosmopolitan phage-plasmid, allowing it to create continuous productive infections in a population of marine Roseobacter. Recurrent loss-of-function mutations in the phage repressor that controls prophage induction leads to constitutively lytic phage-plasmids that spread rapidly throughout the population. The entire phage-plasmid genome is packaged into virions, which were horizontally transferred by re-infecting lysogenized cells, leading to an increase in phage-plasmid copy number and to heterozygosity in a phage repressor locus in re-infected cells. However, the uneven distribution of phage-plasmids after cell division (i.e., segregational drift) leads to the production of offspring carrying only the constitutively lytic phage-plasmid, thus restarting the lysis-reinfection-segregation life cycle. Mathematical models and experiments show that these dynamics lead to a continuous productive infection of the bacterial population, in which lytic and lysogenic phage-plasmids coexist. Furthermore, analyses of marine bacterial genome sequences indicate that the plasmid backbone here can carry different phages and disseminates trans-continentally. Our study highlights how the interplay between phage infection and plasmid genetics provides a unique eco-evolutionary strategy for phage-plasmids.
-
Annotation-free discovery of functional groups in microbial communities
Abstract
Recent studies have shown that microbial communities are composed of groups of functionally cohesive taxa whose abundance is more stable and better-associated with metabolic fluxes than that of any individual taxon. However, identifying these functional groups in a manner that is independent of error-prone functional gene annotations remains a major open problem. Here we tackle this structure–function problem by developing a novel unsupervised approach that coarse-grains taxa into functional groups, solely on the basis of the patterns of statistical variation in species abundances and functional read-outs. We demonstrate the power of this approach on three distinct datasets. On data of replicate microcosms with heterotrophic soil bacteria, our unsupervised algorithm recovered experimentally validated functional groups that divide metabolic labour and remain stable despite large variation in species composition. When leveraged against the ocean microbiome data, our approach discovered a functional group that combines aerobic and anaerobic ammonia oxidizers whose summed abundance tracks closely with nitrate concentrations in the water column. Finally, we show that our framework can enable the detection of species groups that are probably responsible for the production or consumption of metabolites abundant in animal gut microbiomes, serving as a hypothesis-generating tool for mechanistic studies. Overall, this work advances our understanding of structure–function relationships in complex microbiomes and provides a powerful approach to discover functional groups in an objective and systematic manner.
-
A mutant fitness assay identifies bacterial interactions in a model ocean hot spot
Abstract
Bacteria that assemble in phycospheres surrounding living phytoplankton cells metabolize a substantial proportion of ocean primary productivity. Yet the type and extent of interactions occurring among species that colonize these micron-scale “hot spot” environments are challenging to study. We identified genes that mediate bacterial interactions in phycosphere communities by culturing a transposon mutant library of copiotrophic bacterium Ruegeria pomeroyi DSS-3 with the diatom Thalassiosira pseudonana CCMP1335 as the sole source of organic matter in the presence or absence of other heterotrophic bacterial species. The function of genes having significant effects on R. pomeroyi fitness indicated explicit cell–cell interactions initiated in the multibacterial phycospheres. We found that R. pomeroyi simultaneously competed for shared substrates while increasing reliance on substrates that did not support the other species’ growth. Fitness outcomes also indicated that the bacterium competed for nitrogen in the forms of ammonium and amino acids; obtained purines, pyrimidines, and cofactors via crossfeeding; both initiated and defended antagonistic interactions; and sensed an environment with altered oxygen and superoxide levels. The large genomes characteristic of copiotrophic marine bacteria are hypothesized to enable responses to dynamic ecological challenges occurring at the scale of microns. Here, we discover >200 nonessential genes implicated in the management of fitness costs and benefits of membership in a globally significant bacterial community.
-
Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria
Abstract
Polysaccharide breakdown by bacteria requires the activity of enzymes that degrade polymers either intra- or extra-cellularly. The latter mechanism generates a localized pool of breakdown products that are accessible to the enzyme producers themselves as well as to other organisms. Marine bacterial taxa often show marked differences in the production and secretion of degradative enzymes that break down polysaccharides. These differences can have profound effects on the pool of diffusible breakdown products and hence on the ecological dynamics. However, the consequences of differences in enzymatic secretions on cellular growth dynamics and interactions are unclear. Here we study growth dynamics of single cells within populations of marine Vibrionaceae strains that grow on the abundant marine polymer alginate, using microfluidics coupled to quantitative single-cell analysis and mathematical modelling. We find that strains that have low extracellular secretions of alginate lyases aggregate more strongly than strains that secrete high levels of enzymes. One plausible reason for this observation is that low secretors require a higher cellular density to achieve maximal growth rates in comparison with high secretors. Our findings indicate that increased aggregation increases intercellular synergy amongst cells of low-secreting strains. By mathematically modelling the impact of the level of degradative enzyme secretion on the rate of diffusive oligomer loss, we find that enzymatic secretion capability modulates the propensity of cells within clonal populations to cooperate or compete with each other. Our experiments and models demonstrate that enzymatic secretion capabilities can be linked with the propensity of cell aggregation in marine bacteria that extracellularly catabolize polysaccharides.
-
Encounter rates prime interactions between microorganisms
Abstract
Properties of microbial communities emerge from the interactions between microorganisms and between microorganisms and their environment. At the scale of the organisms, microbial interactions are multi-step processes that are initiated by cell–cell or cell–resource encounters. Quantification and rational design of microbial interactions thus require quantification of encounter rates. Encounter rates can often be quantified through encounter kernels—mathematical formulae that capture the dependence of encounter rates on cell phenotypes, such as cell size, shape, density or motility, and environmental conditions, such as turbulence intensity or viscosity. While encounter kernels have been studied for over a century, they are often not sufficiently considered in descriptions of microbial populations. Furthermore, formulae for kernels are known only in a small number of canonical encounter scenarios. Yet, encounter kernels can guide experimental efforts to control microbial interactions by elucidating how encounter rates depend on key phenotypic and environmental variables. Encounter kernels also provide physically grounded estimates for parameters that are used in ecological models of microbial populations. We illustrate this encounter-oriented perspective on microbial interactions by reviewing traditional and recently identified kernels describing encounters between microorganisms and between microorganisms and resources in aquatic systems.
-
Ecological divergence of syntopic marine bacterial species is shaped by gene content and expression
Abstract
Identifying mechanisms by which bacterial species evolve and maintain genomic diversity is particularly challenging for the uncultured lineages that dominate the surface ocean. A longitudinal analysis of bacterial genes, genomes, and transcripts during a coastal phytoplankton bloom revealed two co-occurring, highly related Rhodobacteraceae species from the deeply branching and uncultured NAC11-7 lineage. These have identical 16S rRNA gene amplicon sequences, yet their genome contents assembled from metagenomes and single cells indicate species-level divergence. Moreover, shifts in relative dominance of the species during dynamic bloom conditions over 7 weeks confirmed the syntopic species’ divergent responses to the same microenvironment at the same time. Genes unique to each species and genes shared but divergent in per-cell inventories of mRNAs accounted for 5% of the species’ pangenome content. These analyses uncover physiological and ecological features that differentiate the species, including capacities for organic carbon utilization, attributes of the cell surface, metal requirements, and vitamin biosynthesis. Such insights into the coexistence of highly related and ecologically similar bacterial species in their shared natural habitat are rare.
-
Spatial self-organization of metabolism in microbial systems: A matter of enzymes and chemicals
Abstract
Most bacteria live in dense, spatially structured communities such as biofilms. The high density allows cells to alter the local microenvironment, whereas the limited mobility can cause species to become spatially organized. Together, these factors can spatially organize metabolic processes within microbial communities so that cells in different locations perform different metabolic reactions. The overall metabolic activity of a community depends both on how metabolic reactions are arranged in space and on how they are coupled, i.e., how cells in different regions exchange metabolites. Here, we review mechanisms that lead to the spatial organization of metabolic processes in microbial systems. We discuss factors that determine the length scales over which metabolic activities are arranged in space and highlight how the spatial organization of metabolic processes affects the ecology and evolution of microbial communities. Finally, we define key open questions that we believe should be the main focus of future research.
-
Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria
Abstract
Behaviours such as chemotaxis can facilitate metabolic exchanges between phytoplankton and heterotrophic bacteria, which ultimately regulate oceanic productivity and biogeochemistry. However, numerically dominant picophytoplankton have been considered too small to be detected by chemotactic bacteria, implying that cell–cell interactions might not be possible between some of the most abundant organisms in the ocean. Here we examined how bacterial behaviour influences metabolic exchanges at the single-cell level between the ubiquitous picophytoplankton Synechococcus and the heterotrophic bacterium Marinobacter adhaerens, using bacterial mutants deficient in motility and chemotaxis. Stable-isotope tracking revealed that chemotaxis increased nitrogen and carbon uptake of both partners by up to 4.4-fold. A mathematical model following thousands of cells confirmed that short periods of exposure to small but nutrient-rich microenvironments surrounding Synechococcus cells provide a considerable competitive advantage to chemotactic bacteria. These findings reveal that transient interactions mediated by chemotaxis can underpin metabolic relationships among the ocean’s most abundant microorganisms.
-
Viral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore blooms
Abstract
Algal blooms are hotspots of marine primary production and play central roles in microbial ecology and global elemental cycling. Upon demise of the bloom, organic carbon is partly respired and partly transferred to either higher trophic levels, bacterial biomass production or sinking. Viral infection can lead to bloom termination, but its impact on the fate of carbon remains largely unquantified. Here, we characterize the interplay between viral infection and the composition of a bloom-associated microbiome and consequently the evolving biogeochemical landscape, by conducting a large-scale mesocosm experiment where we monitor seven induced coccolithophore blooms. The blooms show different degrees of viral infection and reveal that only high levels of viral infection are followed by significant shifts in the composition of free-living bacterial and eukaryotic assemblages. Intriguingly, upon viral infection the biomass of eukaryotic heterotrophs (thraustochytrids) rivals that of bacteria as potential recyclers of organic matter. By combining modeling and quantification of active viral infection at a single-cell resolution, we estimate that viral infection causes a 2–4 fold increase in per-cell rates of extracellular carbon release in the form of acidic polysaccharides and particulate inorganic carbon, two major contributors to carbon sinking into the deep ocean. These results reveal the impact of viral infection on the fate of carbon through microbial recyclers of organic matter in large-scale coccolithophore blooms.
-
Changes in interactions over ecological time scales influence single-cell growth dynamics in a metabolically coupled marine microbial community
Abstract
Microbial communities thrive in almost all habitats on earth. Within these communities, cells interact through the release and uptake of metabolites. These interactions can have synergistic or antagonistic effects on individual community members. The collective metabolic activity of microbial communities leads to changes in their local environment. As the environment changes over time, the nature of the interactions between cells can change. We currently lack understanding of how such dynamic feedbacks affect the growth dynamics of individual microbes and of the community as a whole. Here we study how interactions mediated by the exchange of metabolites through the environment change over time within a simple marine microbial community. We used a microfluidic-based approach that allows us to disentangle the effect cells have on their environment from how they respond to their environment. We found that the interactions between two species-a degrader of chitin and a cross-feeder that consumes metabolic by-products-changes dynamically over time as cells modify their environment. Cells initially interact positively and then start to compete at later stages of growth. Our results demonstrate that interactions between microorganisms are not static and depend on the state of the environment, emphasizing the importance of disentangling how modifications of the environment affects species interactions. This experimental approach can shed new light on how interspecies interactions scale up to community level processes in natural environments.
-
Bacterial transcriptional response to labile exometabolites from photosynthetic picoeukaryote Micromonas commoda
Abstract
Dissolved primary production released into seawater by marine phytoplankton is a major source of carbon fueling heterotrophic bacterial production in the ocean. The composition of the organic compounds released by healthy phytoplankton is poorly known and difficult to assess with existing chemical methods. Here, expression of transporter and catabolic genes by three model marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14, and Polaribacter dokdonensis MED152) was used as a biological sensor of metabolites released from the picoeukaryote Micromonas commoda RCC299. Bacterial expression responses indicated that the three species together recognized 38 picoeukaryote metabolites. This was consistent with the Micromonas expression of genes for starch metabolism and synthesis of peptidoglycan-like intermediates. A comparison of the hypothesized Micromonas exometabolite pool with that of the diatom Thalassiosira pseudonana CCMP1335, analyzed previously with the same biological sensor method, indicated that both phytoplankton released organic acids, nucleosides, and amino acids, but differed in polysaccharide and organic nitrogen release. Future ocean conditions are expected to favor picoeukaryotic phytoplankton over larger-celled microphytoplankton. Results from this study suggest that such a shift could alter the substrate pool available to heterotrophic bacterioplankton.
-
Impact of meltwater flow intensity on the spatiotemporal heterogeneity of microbial mats in the McMurdo Dry Valleys, Antarctica
Abstract
The meltwater streams of the McMurdo Dry Valleys are hot spots of biological diversity in the climate-sensitive polar desert landscape. Microbial mats, largely comprised of cyanobacteria, dominate the streams which flow for a brief window of time (~10 weeks) over the austral summer. These communities, critical to nutrient and carbon cycling, display previously uncharacterized patterns of rapid destabilization and recovery upon exposure to variable and physiologically detrimental conditions. Here, we characterize changes in biodiversity, transcriptional responses and activity of microbial mats in response to hydrological disturbance over spatiotemporal gradients. While diverse metabolic strategies persist between marginal mats and main channel mats, data collected from 4 time points during the austral summer revealed a homogenization of the mat communities during the mid-season peak meltwater flow, directly influencing the biogeochemical roles of this stream ecosystem. Gene expression pattern analyses identified strong functional sensitivities of nitrogen-fixing marginal mats to changes in hydrological activities. Stress response markers detailed the environmental challenges of each microhabitat and the molecular mechanisms underpinning survival in a polar desert ecosystem at the forefront of climate change. At mid and end points in the flow cycle, mobile genetic elements were upregulated across all mat types indicating high degrees of genome evolvability and transcriptional synchronies. Additionally, we identified novel antifreeze activity in the stream microbial mats indicating the presence of ice-binding proteins (IBPs). Cumulatively, these data provide a new view of active intra-stream diversity, biotic interactions and alterations in ecosystem function over a high-flow hydrological regime.
-
Microbial population dynamics decouple growth response from environmental nutrient concentration
Abstract
How the growth rate of a microbial population responds to the environmental availability of chemical nutrients and other resources is a fundamental question in microbiology. Models of this response, such as the widely used Monod model, are generally characterized by a maximum growth rate and a half-saturation concentration of the resource. What values should we expect for these half-saturation concentrations, and how should they depend on the environmental concentration of the resource? We survey growth response data across a wide range of organisms and resources. We find that the half-saturation concentrations vary across orders of magnitude, even for the same organism and resource. To explain this variation, we develop an evolutionary model to show that demographic fluctuations (genetic drift) can constrain the adaptation of half-saturation concentrations. We find that this effect fundamentally differs depending on the type of population dynamics: Populations undergoing periodic bottlenecks of fixed size will adapt their half-saturation concentrations in proportion to the environmental resource concentrations, but populations undergoing periodic dilutions of fixed size will evolve half-saturation concentrations that are largely decoupled from the environmental concentrations. Our model not only provides testable predictions for laboratory evolution experiments, but it also reveals how an evolved half-saturation concentration may not reflect the organism’s environment. In particular, this explains how organisms in resource-rich environments can still evolve fast growth at low resource concentrations. Altogether, our results demonstrate the critical role of population dynamics in shaping fundamental ecological traits.